
mnfy Documentation
Release 33.0.0

Brett Cannon

April 09, 2014

Contents

i

ii

mnfy Documentation, Release 33.0.0

Contents

• mnfy — minify/obfuscate Python 3 source code
– Web Pages
– What the heck is mnfy for?

• Usage
– A note about version numbers and Python version compatibility
– Command-line Usage

• Transformations
– Source emission
– Safe transformations

* Combine imports
* Combine with statements
* Eliminate unused constants
* Integer constants to power

– Sane transformations
– Unsafe transformations

* Function to lambda

Contents 1

mnfy Documentation, Release 33.0.0

2 Contents

CHAPTER 1

Web Pages

• Documentation

• Project site (issue tracker)

• PyPI/Cheeseshop

3

http://mnfy.rtfd.org
https://github.com/brettcannon/mnfy
https://github.com/brettcannon/mnfy/issues?state=open
http://pypi.python.org/pypi/mnfy

mnfy Documentation, Release 33.0.0

4 Chapter 1. Web Pages

CHAPTER 2

What the heck is mnfy for?

The mnfy project was created for two reasons:

• To show that shipping bytecode files without source, as a form of obfuscation, is not the best option available

• Provide a minification of Python source code when total byte size of source code is paramount

When people ship Python code as only bytecode files (i.e. only .pyo files and no .py files), there are couple
drawbacks. First and foremost, it prevents users from using your code with all available Python interpreters such as
Jython and IronPython. Another drawback is that it is a poor form of obfuscation as projects like Meta allow you to
take bytecode and reverse-engineer the original source code as enough details are kept that the only details missing
are single-line comments.

When the total number of bytes used to ship Python code is paramount, then you want to minify the source code.
Bytecode files actually contain so much detail that the space savings can be miniscule (e.g. the decimal module
from Python’s standard libary, which is the largest single file in the stdlib, has a bytecode file that is only 5% smaller
than its original source code).

5

http://www.jython.org
http://ironpython.net/
http://pypi.python.org/pypi/meta

mnfy Documentation, Release 33.0.0

6 Chapter 2. What the heck is mnfy for?

CHAPTER 3

Usage

3.1 A note about version numbers and Python version compatibility

The version number for mnfy is PEP 386 compliant, taking the form of PPP.FFF.BBB. The FFF.BBB represents
the feature and bugfix version numbers of mnfy itself. The PPP portion of the version number represents the Python
version that mnfy is compatible with: ’{}{}’.format(*sys.version_info[:2]).

The Python version that mnfy is compatible with is directly embedded in the version number as Python’s AST is
not guaranteed to be backwards-compatible. This means that you should use each version of mnfy with a specific
version of Python. Since mnfy works with source code and not bytecode you can safely use mnfy on code that must
be backwards-compatible with older versions of Python, just make sure the interpreter you use with mnfy is correct
and can parse the source code (e.g. just because the latest version of mnfy only works with Python 3.3 does not mean
you cannot use that release against source code that must work with Python 3.2, just make sure to use a Python 3.3
interpreter with mnfy and that the source code can be read by a Python 3.3 interpreter).

3.2 Command-line Usage

TL;DR: pass the file you want to minify as an argument to mnfy and it will print to stdout the source code minified
such that the AST is exactly the same as the original source code. To get transformations that will change the AST to
varying degrees you will need to specificy various flags.

See the help message for the project for full instructions on usage:

python3 -m mnfy -h
python3 mnfy.py -h

7

http://python.org/dev/peps/pep-0386/

mnfy Documentation, Release 33.0.0

8 Chapter 3. Usage

CHAPTER 4

Transformations

4.1 Source emission

If you want no change to the AST compared to the original source code then you want mnfy’s default behaviour of only
emitting source code with not AST changes. Any tricks with source code formatting have been verified by passing
Python’s standard library through mnfy with only source emission used and comparing the result AST for no changes.

As an example of what source emission does, this code (32 characters):

if True:
x = 5 + 2
y = 9 - 1

becomes (19 characters):

if True:x=5+2;y=9-1

4.2 Safe transformations

For a transformation to be considered safe it must semantically equivalent to running the code as python3 -OO but
can lead to a change in the AST. As the changes are semantically safe there is only a single option to turn on these
transformations.

4.2.1 Combine imports

Take imports that are sequentially next to each other and put them on the same line without changing the import order.

From:

import X # 8 characters
import Y # 8 characters; 16 total

to:

import X,Y # 10 characters

From:

from X import y # 15 characters
from X import z # 15 characters; 30 total

9

mnfy Documentation, Release 33.0.0

to:

from X import y,z # 17 characters

4.2.2 Combine with statements

As of Python 3.2, contextlib.nested() is syntactically supported.

From:

with A:
with B:pass

to:

with A,B:pass

4.2.3 Eliminate unused constants

If a constant isn’t used then there is no need to keep it around. This primarily eliminates docstrings. If any block
becomes completely empty then a pass statement is inserted.

From:

def bacon():
"""Docstring"""

to:

def bacon():pass

From:

if X:pass
else:4+2

to:

if X:pass

4.2.4 Integer constants to power

For sufficiently large integer constants, it saves space to use the power operator (**). Only numbers of base 2 and 10
are used as that is what the math module supports.

From:

4294967296

to:

2**32

10 Chapter 4. Transformations

http://docs.python.org/2.7/library/contextlib.html#contextlib.nested
http://docs.python.org/3/library/math.html

mnfy Documentation, Release 33.0.0

4.3 Sane transformations

For typical code, sane transformations should be fine (e.g. you are not introspecting local variables). Since these
transformations are typically safe you can turn them all on with a single option, but they can also be switched on
individually as desired.

Note: Currently there are no sane transformations defined. See the issue tracker for some proposed transformations.

4.4 Unsafe transformations

For the more adventurous who know what features of Python their code relies on, unsafe transformations can be used.
Just be very aware of what your code depends on before using any specific transformation. For this reason each unsafe
transformation must be switched on individually.

4.4.1 Function to lambda

This is unsafe as lambda functions are not exactly like a function (e.g. lambda functions do not have a __name__
attribute).

From:

def identity(x):return x # 24 characters

to:

identity=lambda x:x # 19 characters

4.3. Sane transformations 11

https://github.com/brettcannon/mnfy/issues?state=open

